Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effect of linker of electrodes prepared from sol-gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis

Identifieur interne : 002329 ( Main/Repository ); précédent : 002328; suivant : 002330

The effect of linker of electrodes prepared from sol-gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis

Auteurs : RBID : Pascal:12-0336249

Descripteurs français

English descriptors

Abstract

The effect of linker of three-dimensional, hydrophilic-carbon-nanoparticle film-electrodes prepared by layer-by-layer method on redox probe accumulation and bioelectrocatalytic dioxygen reduction was studied and compared for two different electrode scaffolds. The linker in both of these scaffolds was based on the same ionic liquid sol-gel precursor, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium bis(trifluoromethyl-sulfonyl)imide. The first electrode type was prepared by alternative immersion of tin doped indium oxide substrate in an aqueous suspension of carbon nanoparticles modified with phenyl sulphonic groups and a sol composed of ionic liquid sol-gel precursor and tetramethoxysilane. For the second electrode type sol was replaced by a methanolic suspension of silicate submicroparticles with appended imidazolium functional groups. In both films 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) anions accumulate irreversibly. In the case of the first electrode electrostatic attraction plays the more important role in comparison to the case of the second where stable adsorption of the redox probe takes place. After adsorption of bilirubin oxidase, electrodes obtained from sol and carbon nanoparticles exhibit modest bioelectrocatalytic activity towards dioxygen reduction at pH 4.8, however those obtained from oppositely charged particles are much more efficient. The magnitude of the associated catalytic current in both cases depends on the number of immersion and withdrawal steps. Interestingly, mediatorless catalysis at electrodes obtained from oppositely charged particles is more efficient than mediated catalysis.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0336249

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The effect of linker of electrodes prepared from sol-gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis</title>
<author>
<name sortKey="Szot, Katarzyna" uniqKey="Szot K">Katarzyna Szot</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52</s1>
<s2>01-224 Warszawa</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>01-224 Warszawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lynch, Robert P" uniqKey="Lynch R">Robert P. Lynch</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52</s1>
<s2>01-224 Warszawa</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>01-224 Warszawa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics/Materials and Surface Science Institute, University of Limerick</s1>
<s3>IRL</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Department of Physics/Materials and Surface Science Institute, University of Limerick</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lesniewski, Adam" uniqKey="Lesniewski A">Adam Lesniewski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52</s1>
<s2>01-224 Warszawa</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>01-224 Warszawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Majewska, Ewa" uniqKey="Majewska E">Ewa Majewska</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52</s1>
<s2>01-224 Warszawa</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>01-224 Warszawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sirieix Plenet, Juliette" uniqKey="Sirieix Plenet J">Juliette Sirieix-Plenet</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>UPMC Univ. Paris 06, UMR 7195, Laboratoire de Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques (PECSA)</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>CNRS, UMR 7195 PECSA</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gaillon, Laurent" uniqKey="Gaillon L">Laurent Gaillon</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>UPMC Univ. Paris 06, UMR 7195, Laboratoire de Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques (PECSA)</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Opallo, Marcin" uniqKey="Opallo M">Marcin Opallo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52</s1>
<s2>01-224 Warszawa</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>01-224 Warszawa</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0336249</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0336249 INIST</idno>
<idno type="RBID">Pascal:12-0336249</idno>
<idno type="wicri:Area/Main/Corpus">001946</idno>
<idno type="wicri:Area/Main/Repository">002329</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0013-4686</idno>
<title level="j" type="abbreviated">Electrochim. acta</title>
<title level="j" type="main">Electrochimica acta</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bilirubin oxidase</term>
<term>Bioelectrochemistry</term>
<term>Carbon</term>
<term>Chemical reduction</term>
<term>Cyclic voltammetry</term>
<term>Electrocatalysis</term>
<term>Electrochemical reaction</term>
<term>Enzymatic catalysis</term>
<term>Immobilized enzyme</term>
<term>Indium tin oxide electrode</term>
<term>Ionic liquid</term>
<term>Kinetics</term>
<term>Mixed multilayer</term>
<term>Nanoparticle</term>
<term>Organic silicate</term>
<term>Oxygen</term>
<term>Precursor</term>
<term>Preparation</term>
<term>Self assembly</term>
<term>Self-assembled layer</term>
<term>Sol gel process</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Electrode ITO</term>
<term>Préparation</term>
<term>Procédé sol gel</term>
<term>Liquide ionique</term>
<term>Précurseur</term>
<term>Carbone</term>
<term>Nanoparticule</term>
<term>Oxygène</term>
<term>Réduction chimique</term>
<term>Catalyse enzymatique</term>
<term>Enzyme immobilisée</term>
<term>Electrocatalyse</term>
<term>Couche multimoléculaire mixte</term>
<term>Couche autoassemblée</term>
<term>Silicate organique</term>
<term>Autoassemblage</term>
<term>Bioélectrochimie</term>
<term>Bilirubin oxidase</term>
<term>Cinétique</term>
<term>Voltammétrie cyclique</term>
<term>Réaction électrochimique</term>
<term>Imidazolium(1-méthyl-3-[3-(triméthoxysilyl)propyl]) amidure(bis[trifluoromésyl])</term>
<term>Silane(tétraméthoxy)</term>
<term>2,2p-Azinobis[benzothiazoline-6-sulfonique acide](3,3p-diéthyl)</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Carbone</term>
<term>Oxygène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of linker of three-dimensional, hydrophilic-carbon-nanoparticle film-electrodes prepared by layer-by-layer method on redox probe accumulation and bioelectrocatalytic dioxygen reduction was studied and compared for two different electrode scaffolds. The linker in both of these scaffolds was based on the same ionic liquid sol-gel precursor, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium bis(trifluoromethyl-sulfonyl)imide. The first electrode type was prepared by alternative immersion of tin doped indium oxide substrate in an aqueous suspension of carbon nanoparticles modified with phenyl sulphonic groups and a sol composed of ionic liquid sol-gel precursor and tetramethoxysilane. For the second electrode type sol was replaced by a methanolic suspension of silicate submicroparticles with appended imidazolium functional groups. In both films 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) anions accumulate irreversibly. In the case of the first electrode electrostatic attraction plays the more important role in comparison to the case of the second where stable adsorption of the redox probe takes place. After adsorption of bilirubin oxidase, electrodes obtained from sol and carbon nanoparticles exhibit modest bioelectrocatalytic activity towards dioxygen reduction at pH 4.8, however those obtained from oppositely charged particles are much more efficient. The magnitude of the associated catalytic current in both cases depends on the number of immersion and withdrawal steps. Interestingly, mediatorless catalysis at electrodes obtained from oppositely charged particles is more efficient than mediated catalysis.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0013-4686</s0>
</fA01>
<fA02 i1="01">
<s0>ELCAAV</s0>
</fA02>
<fA03 i2="1">
<s0>Electrochim. acta</s0>
</fA03>
<fA05>
<s2>56</s2>
</fA05>
<fA06>
<s2>28</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The effect of linker of electrodes prepared from sol-gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Electrochemistry from Biology to Physics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>SZOT (Katarzyna)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LYNCH (Robert P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LESNIEWSKI (Adam)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MAJEWSKA (Ewa)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SIRIEIX-PLENET (Juliette)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GAILLON (Laurent)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>OPALLO (Marcin)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BERGEL (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BOND (A. M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BRANKOVIC (S.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>BULTEL (Y.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>DI QUARTO (F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>GORTON (L.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="07" i2="1">
<s1>INZELT (G.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="08" i2="1">
<s1>LAPICQUE (F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="09" i2="1">
<s1>LISDAT (F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="10" i2="1">
<s1>OPALLO (M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="11" i2="1">
<s1>SAVINOVA (E. R.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="12" i2="1">
<s1>TOH (C.S.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="13" i2="1">
<s1>TSIRLINA (G. A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="14" i2="1">
<s1>VIVIER (V.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="15" i2="1">
<s1>WINTER (M.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52</s1>
<s2>01-224 Warszawa</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics/Materials and Surface Science Institute, University of Limerick</s1>
<s3>IRL</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>UPMC Univ. Paris 06, UMR 7195, Laboratoire de Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques (PECSA)</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>CNRS, UMR 7195 PECSA</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>CNRS</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Monash University</s1>
<s2>Clayton, Vic.</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>University of Houston</s1>
<s2>Houston, TX</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>LEPMI</s1>
<s2>Grenoble</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>University of Palermo</s1>
<s3>ITA</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA15 i1="06">
<s1>Lund University</s1>
<s3>SWE</s3>
<sZ>6 aut.</sZ>
</fA15>
<fA15 i1="07">
<s1>Eotvos Lorand University</s1>
<s2>Budapest</s2>
<s3>HUN</s3>
<sZ>7 aut.</sZ>
</fA15>
<fA15 i1="08">
<s1>CNRS</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>8 aut.</sZ>
</fA15>
<fA15 i1="09">
<s1>Wildau University</s1>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
</fA15>
<fA15 i1="10">
<s1>Polish Academy of Sciences</s1>
<s2>Warsaw</s2>
<s3>POL</s3>
<sZ>10 aut.</sZ>
</fA15>
<fA15 i1="11">
<s1>Université de Strasbourg</s1>
<s3>FRA</s3>
<sZ>11 aut.</sZ>
</fA15>
<fA15 i1="12">
<s1>Nanyang Technological University</s1>
<s3>SGP</s3>
<sZ>12 aut.</sZ>
</fA15>
<fA15 i1="13">
<s1>Moscow State University</s1>
<s3>RUS</s3>
<sZ>13 aut.</sZ>
</fA15>
<fA15 i1="14">
<s1>Université Pierre et Marie Curie</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>14 aut.</sZ>
</fA15>
<fA15 i1="15">
<s1>University of Münster</s1>
<s3>DEU</s3>
<sZ>15 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>International Society of Electrochemistry (ISE)</s1>
<s2>1004 Lausanne</s2>
<s3>CHE</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>10306-10312</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1516</s2>
<s5>354000505919820020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>81 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0336249</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Electrochimica acta</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effect of linker of three-dimensional, hydrophilic-carbon-nanoparticle film-electrodes prepared by layer-by-layer method on redox probe accumulation and bioelectrocatalytic dioxygen reduction was studied and compared for two different electrode scaffolds. The linker in both of these scaffolds was based on the same ionic liquid sol-gel precursor, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium bis(trifluoromethyl-sulfonyl)imide. The first electrode type was prepared by alternative immersion of tin doped indium oxide substrate in an aqueous suspension of carbon nanoparticles modified with phenyl sulphonic groups and a sol composed of ionic liquid sol-gel precursor and tetramethoxysilane. For the second electrode type sol was replaced by a methanolic suspension of silicate submicroparticles with appended imidazolium functional groups. In both films 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) anions accumulate irreversibly. In the case of the first electrode electrostatic attraction plays the more important role in comparison to the case of the second where stable adsorption of the redox probe takes place. After adsorption of bilirubin oxidase, electrodes obtained from sol and carbon nanoparticles exhibit modest bioelectrocatalytic activity towards dioxygen reduction at pH 4.8, however those obtained from oppositely charged particles are much more efficient. The magnitude of the associated catalytic current in both cases depends on the number of immersion and withdrawal steps. Interestingly, mediatorless catalysis at electrodes obtained from oppositely charged particles is more efficient than mediated catalysis.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A03E02</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01H02B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Electrode ITO</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Indium tin oxide electrode</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Electrodo ITO</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Préparation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Preparation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Preparación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Procédé sol gel</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Sol gel process</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Procedimiento sol gel</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Liquide ionique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Ionic liquid</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Líquido iónico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Précurseur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Precursor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Precursor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Carbone</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Carbon</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Carbono</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Oxígeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Réduction chimique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Chemical reduction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Reducción química</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Catalyse enzymatique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Enzymatic catalysis</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Catálisis enzimática</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Enzyme immobilisée</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Immobilized enzyme</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Enzima inmovilizada</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Electrocatalyse</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electrocatalysis</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Electrocatálisis</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Couche multimoléculaire mixte</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Mixed multilayer</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Capa multimolecular mixta</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Couche autoassemblée</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Self-assembled layer</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Capa autoensamblada</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Silicate organique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Organic silicate</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Silicato orgánico</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Autoassemblage</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Self assembly</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Autoensamble</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Bioélectrochimie</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Bioelectrochemistry</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Bioelectroquímica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Bilirubin oxidase</s0>
<s2>FE</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Bilirubin oxidase</s0>
<s2>FE</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Bilirubin oxidase</s0>
<s2>FE</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Cinétique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Kinetics</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Cinética</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Voltammétrie cyclique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Cyclic voltammetry</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Voltametría cíclica</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Réaction électrochimique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Electrochemical reaction</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Reacción electroquímica</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Imidazolium(1-méthyl-3-[3-(triméthoxysilyl)propyl]) amidure(bis[trifluoromésyl])</s0>
<s2>NK</s2>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Silane(tétraméthoxy)</s0>
<s2>NK</s2>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>2,2p-Azinobis[benzothiazoline-6-sulfonique acide](3,3p-diéthyl)</s0>
<s2>NK</s2>
<s4>INC</s4>
<s5>78</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Oxidoreductases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Oxidoreductases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Oxidoreductases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Enzima</s0>
<s2>FE</s2>
</fC07>
<fN21>
<s1>254</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Society of Electrochemistry (ISE) Meeting</s1>
<s2>61</s2>
<s3>Nice FRA</s3>
<s4>2010-09-26</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002329 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002329 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0336249
   |texte=   The effect of linker of electrodes prepared from sol-gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024